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PLASTIC BUCKLING OF A RECTANGULAR PLATE UNDER EDGE THRUSTS

By G. H. HANDELMANand W. PR~GER

SLIMMARY

The fundamental equutions for the plastic buckling of a
rectangular plate under edge thrusts are deceloped on the basis
(If a new set ofstress-strain relation8 for the behal%w of a meta[
in the plastic range. Th.we relation8 are derired for buckling
from a date gf uniform comprew”on. The fundamental equa-
tih -for the budding of a. simply compre88ed plate together m“th
typical boundary conditions is then dereloped and the results
me applied to calculating the buckling loads of a thin stn”p, a
w’mp[y supported plate, and a crum_formsection. COmpa?’iSOn8
with the theon”e8 qf Timo8henko and Ilyushin are made. Fin-
ally, an energy method i8 giren which can be used for~nding
approximate ralues of the critical load.

INTRODUCTION

This paper is concerned with the pkwtic buckIing of a
rectangular plate which, previous to bucklingj, is under a
uniform compresire stress COin the direction of one of its
edges. In t-hecase of elastic buckling in which aOremains
below the elastic limit of the plate material, it is well-known
that the bucld@stress depends on the dimensions of the plate
and on the manner in which it is supported (cf. reference 1, ch.
7). In the case of the plastic buckling of beams, on the other
hand, Engesser (reference 2) and Yon IWmtm (reference 3)
developed a satisfactory theory based on the fact that for a
fiber which is compre=d beyond the elastic limit the tangent
modulus (i. e., the ratio of the variation of strain to the cor-
responding variation of stress)aesumesdifferentvaluesdepend-
ing on whether the variation of stressconstitutes an increase
or a relief of the existing comprcsive str=s.

Generalization of this theory to the plastic buckling of
plates has repeatedly been attempted. These attempts can
be divided into two groups which maybe labeled formal and
analytical genera.lizations. The formal generalizations start
from the remark that the formulas of the Engesser-Von
IWrnfm theory of the pkwtic buckling of beams differ from
the -well-known formulas for the elastic buckling of beams
only by the fact that the so-called “reduced modulus”
replaces Young’s modulus. A formal generalization of the
Engesser-Yon IW-dn theory to the plastic buckling of plates
is therefore obtained by introducing the reduced modulus
into the formulas for the elastic buckling of plates in such a
manner that the results of the Enge=er-Von Kfmmfm theory
me obtained in the case of a narrow rectangular strip which
is free on its 10UWedges and simply supported on the short
edges where it carries a compressive load. Of course, this
formal generalization is more or less arbitrary and leads by

no means to a unique result. Formulas of this type have
been suggested by Bleich (reference 4, p. 216 ff.) and Timo-
shenko (reference 1, p. 384).

In contrast with these formal generalizations of the Enges-
ser-Yon IWm+in t.heo~, the analytical generalizations do not
merely introduce the reduced modulus of the theory of beams
into the formulas for the elastic buckling of plates. Instead,
the analytical generaIizations go back to the considerations
by which the reduced modulus is derived and try to apply
these to the case of a buckled plate. Generalizations of
this kind have been previously presented by Kaufmann
(reference 5) and Ilyushin (reference 6). As is shown in the

present report, however, these authors use stress-strain
relations which do not fuMI certain postulates of the theory
of plasticity; the correctness of their resuhs must therefore
be questioned.

The present paper aims at developing a theory of the
plastic buckling of plates which takes full account of the
modern theory of plasticity. The stress-strain relations in
the plastic range are discussed at considerable length in the
first section of the ANALYSIS, and it. is shown that, for an
adequate treatment of buckling phenomena, a theory of
phstic flow is indicated rather than a theory of plastic defor-
mation of the type used by Kaufmarm and Ilyushin. The
precise deiinitiona of these terms and the basic considerations
suggesting the use of a theory of plastic deformation for
problems such as buckhng are fuUy discussed in theAhTALY-
S1S. A particular theory of plastic flow suitable for the treat-
ment.of the problems under consideration is de-doped in the
hst section and its relations with other theories of plasticity
are pointed out. It is shown that in the particular case of
a plate buckling out of a state of simple compression there is
very little freedom in the choice of the stress-strain relaiion
if it is to fdfill certain simple postulates. This means that
all the empirical information which is necessary for the theo-
retical treatment of the plastic buckling of a rectangukw
plate under edge thrusts can be obtained by a simple com-
pression test.

The second section presents the development of the fundam-
ental equation of the pIasticbuokling of a simply compressed
plate, and the appropriate equations describing typical bound-
ary conditions are given in the third section. The remaining
parts contain several examples, which are carried out in
detail, as -wellas an equivalent energy principle which proves
to be -rery useful for approzirnate computations. Finally,
the appendiws contain detailed discussions of several teth-
nical points raised in earlier parts of the paper.
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SYMBOLS

length of plate
: constant in compressive stre5s-strainlaw
z expression in variational principle
a’, a~’, a’lP,
6/, b!), ////,

}
coefficients in plastic stress-strain law

c’
b width of plate
B expression in variational principle

c=(A—1)/[(5—4P) h—(1—2v)~

Cr,Q, L%,G arbitrary constants appearing in equa-
tion for ti

D fkwral rigidity of plate (&o/(l-fl)

h, D12,Da “coefEcients in plate equation for plastic
flow

DI,’=DIJD,DIS’ =DJD, Dwr=Dn/D
Dn*, D]z*, Dza* coefficients in plate equation for Ilyu-

shin’s theory of plastic deformation
E,,= D,I*/D, &=DB*/D, i7,g=D=*/D
E tangent modulus in compression
G Young’s modulus
E* Von K&rmfm’s reduced modulus
E, seoant modulus obtained from compres-

sive stress-strain diagram
fti) motion of buclded middle surface for z=

Constant
h thickness of plate
I moment of inertia of cross-section

k=12 =**

~=; ~

~= (2–$X,+ (2r–l)&
Kl =a%jax’g,=wqbj~$l,= 2a’tb/axa~

m number of half waves in buckled configu-
ration

M= rate of change of bending moment about
y-axis

M, rate of change of bending moment about
x-axis

M,p rate of change of twisting moment
n inti3gt3r
N. reduced compressive stress. resultant

(%WL)

N. - rate of change of stress resultant in r-
redirection

.-

N, “rate of change of stress resultant in y-
direction

P total compressive force (tTobh)

r= 4mT)
R

t

u=89+12v —23

ti)

side ratio (b/a)

time

deflection rate

rectangular Cartesian
plane coincides with
unbuckled plate

.-

.-. .

coordinates; x,gl-
micldle surface of

~=(2–v)&+(2v-l)i,
‘- K

“=1–*)
a ratio of Von Khrmfm’s modulus to Young’s

modulus (in section. “Buckling of a
simply supported plate” onIy)

B constant in compressive stress-straiu Iaw

e uniaxial strain

de=, dcp, de,,

I

infhitwimaI strain increment present in
d~zw d-i,,, b., buckling

1
reversible (elastic) strain increments

d+”, d~”,
&z”, d~=” }

permanent (plastic) strain increments
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ii(t, y) normal strain rate in middle surface in x-
clirection

&(r,yj normrd strain rate in middle surface in y-
clirection

+(W) shear strain rate in middle surface

t,=2~h

ro+=a+ >~2– 1

~o-= –.– ~1~1

V=sb

K

h

v

~=rb

u

u;

u~
u,)
u=, CTJ, u=

Tw; Tvz, ‘2X

du., duu, duzr

ratio of Von Kfmmfm’s modulus to
l“oung’s modulus (lZ*/&)

ratio of Young’s modulus to tangent
modulus (a/Ej

Poisson’s ratio

uniaxial stress

intensity of stress( lim,z+ =12—u-r+ 3Tq2)
critical compressive stress
original compressive stress in plate (— u=)
normal stress components
shear stress components

} infinkesirnal stress increments present in

cd function of intensity of stress at
u’ =dti~ldvi
C&=a/(1-@)

W =(infduf
— superscript denoting values on unloading

side of neutral surface
+ superscript denoting values on loading

side of neutral surface

ANALYSIS

STZZSS-STRAIXEELATIOXS FORBUCKLINGFRO.MASTATEOF
UFJFOEMCOMPRESSION

The mechanism of buckling beyond the ehstic limit is
relatively complicated because the material, which was
orighally in a state of simple compression, is loaded in some
regions and unloaded in others during the buckhg process.
Consequently, the stress-strain relations must be considered

in some detail with special reference to the problem of load-
ing beyond the elastic Emit followed by unloading.

The materiaI must exhibit strain-hardening if the deter-
mination of the budding strw is to constitute a problem.
Indeed, for a perfectly pks.tic material which yields under
constant stress, Von IGfnm$n’s reduced modulus vanishes
once the initial compressive stress has reached the yield
Limit. This means that the bending stifkss is reduced to
zero and buckling must be expected quite independent of
the dimensions of the bar.

Stress-strain laws for materkds whkh exhibit strain-
hardening can be divided inta two types which, for con-
venience, will be called ~ttheoriesof plastic deformation”
and “theories of plastic flow.” According to the first group,
there e.sistsa one-to-one correspondence between stress and
strain in the plastic range, as weMw the elastic, provided
that the material is being loaded. The stress-strain law of
the -well-knowmHencliy-N6dai theory (reference 7, ch. 14,
and reference 8) and the law used by I.Iyushin (reference 6)
in his discussion of plastic buckling are typical theories of
plastic deformation. On the other hand, the theories of
plastic flow are based on the assumption that, for a given
state of stress, there ezists a one-to+ne correspondence
between the rates of change of stress and strain in such a
manner that the resulting relation between stress and strain
cannot be integrated so as to yield a relation between
stress ancl strain alone. Typical examples of theories
of plastic flow are the stress-strain relations developed
by Prager (reference 9) and Handelman, Lm, ancl Prager
(reference 10). A particularly important difference between
these two basic theorks of plasticity lies in the fact that the
strain which corresponds to a certain state of stress, accord-
ing to the theory of plastic deformation, is entirely ind~
pendent of the manner in which this state of stress has been
reached, whereas, according to the theory of plastic flow, ~.he
strain depends on the reamer in which the state of stress is
built Up.

The stress-strain relations to be used in the analysis of
the plastic buclding of a rectangular phte under edge thrusts
form a special case of those developed by IIandclman, Lin,
and Prager in reference 10. In this particular case, how-
ever, it is po~~ible to develop the stress-strain relation in a
quite elementary manner, and the inherent difficulties of
the theories of plastic deformation can be seen from a
dightly dif7erent point of view. It appears worth while,
then, to examine these relations in some detail with special
reference to the problem which forms the subject of th~
present report.

In the following, the stresses and strains in the buckled
plate vi-illbe referred to a fixed system of rectangular Car-
tesian coordinates z, y, and z. The x,y-plane of thk coor-
dinate system coincides with the middIe surface of the un-
buckled plate, and the ~~es of z and. y coincide with two of ‘“ “-
its edges, the other edgw falling on the lines z= a and y= b.
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FZQURBI.–Plate underrmfformwmpre.xdrestressh dlrwtion of mariaprforto buckllng.

Prior to buckling, the plate is under a uniform compressive
stress uoin the direction of the z-axis (fig. 1). The investi-
gation of the stability of the stak of stress

C== —ul)

UM=US=O

}

(1)

T=g= ‘r~~=T#==0

requires the knowledge of the reIations between the infinites-
imal increments of stress o%=,da~, du~, drw, drv,, and dr=
and the corresponding increments of strain d%, dq, dqj

d~q, dTP,, and d-t=. Within the framework of plate theory,
u~=rz~=ryz= O, even in the buckled state, and hence CZCTS=
dr,,=d~V,=O. Accordingly, dT.,=d7v.=0. Within the elas-
tic range. the remaining increments of stress and strain are
related to each other by means of

Eodc==duz— vduv

E&= –Vdc.+duu

1

(2)
E&z= -Vdu=-vduv

&&,=2(l +v)dTz,

where E. denotes Young’s modulus and v, Poisson’s ratio.
Before an analysis of the phstic buckling of the plate can
be attempted, the relations replacing equations (2) in the
plastic range must be known. In order to establish these
relations, it will be convenient to think of the strain incre-
ments as consisting of reversible (elastic) and permanent
(plwtic) components:

dkz=dc.’ +de.”

akv=dev’ +&v”

de,=der’+dez”

d7,v=d7w’+d7w’ ‘

(3)

Primes and double primrx denote elastic and plastic com-
ponents, respectively. The elastic increments of strahi are
related to the increments of stress by means of equations
(2), in which the left-hand sides must all be written w“th
primes now:

.

,..
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We.’ =drrz-vdr,
1

Erjiey’= –vdu.+du,

E&z’ = –vdc.-vduv
}

(4)

E&zn’ =2(l+v)dT,,J

These relations may be regarded as the definitions of- tlw
eIastic.increments of strain. The purpose of the following
discussion is to establish similar relations for tbc plastic
increments of strain.

The ehstic increments of strain, equations (4), depend
only on the increments of stress and are independent of the
existing stress Uo. Moreover, a reversal of the signs of all
increments of stress leads to a mere reversal of the signs of
all elastic increments of strain. The pIastic increments of
strain, however, do not have these properties; since they
must vanish as long as U. remains below the elastic Iimil,
they cuot be independent of the existing stress Um More-
over, if for a given value of a. certain stress increments pro-
duce plastic increments of strain, stress iDcremcnts of the
same magnitudes but opposite signs do- not produce any
plastic deformation. In other terms, beyond the hit of
elasticity an irdhit.esimal change of stress may be classified
as loading the material or not according to wbcther it is
accompmied by permanent deformation. Infinitesimal
changes of stress which do not load the material may bc
classified in turn as unloading or neutral, Unloading brings
the material into a state of stress such that all sufhciently
small further changes of stress are accompanied by elastic
deformations ordy. These bt-wicdifferences in loading and
unloading appear somewhat more clearly if the simple
example of a uniaxial state of stress and strain (say a tcnsilo
test) is considered. Let r denote the stress and c tho stmin
in figure 2 and suppose the material is loaded to the poin~
P. ‘

G

The stm.ss-st~a~ndiagram for wioading is R str~ight

I i I

i

f

/

/’
i’

FtGUEE2—Strwa-straindiagramfor loadhrgand mrloadlrrgfor uufaxfd stateof atrcssand
Btrafrl.
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Iine PA with the same slope as the loading curve at the
origin O. The permanent strain corresponding to loading
up to the point P is measured by 0.4. Suppose now that,
after the point P has been reached, the test specimen is
further loaded to the point.PI; by this, the permanent,strain
is increased by the amount .&-ll. In other -ivords,the change
from P to PI constitutes loading in the sense just defined.
On the other hand, if the new state of stress and strain is
given by the point Pz, that is, if the stress has been reduced
below that. at P, the permanent strain is left unchanged.
Furthermore, any srmd change of stress from the point ~z
(strictly, all changes within the ranges ~,~ and PJJ pro-
duces an additional deformation which is purely elastic.
The material has thus been unloaded.

For unia.xialstress any change of stress constitutes either
loading or unloading. A tbird possibility, designated as
“neutral” change of stress, e.sists in the case of combined
stress. A neutral chmge of stress, while not accompanied
by n permanent deformation, brings the material into a
state such that there exist certain further changes of stress
which are arbitrarily small and yet produce a permanent de-
formation. This third condition is illustrated in the anal@s
of the buclding of a plate. It is precisely the possibility of
the occurrence of neutml changes of stresswhich distingukhes
the present problem from that treated by Engesser and Von
Ktirrndn,for in their case the stress is uniaxial in the bucliled
state as vrell as in the unbuckled. ~ccordingly, a change of
strsss can be onIy an increase of the existing compressive
stress (loading) or a decrease (udoading). The situation is
more complicated in the case of a plate.

Since there is no permanent deformation accompanying
neutral changes of strxs or unloading, de=’’ =dc,” =d%” =
d-yzJ’=O; and the relations of equations (4) define the total
change of strain. For loading, howerer, equations (4) must
be supplemented by equations of the form

E&r” =a’dcx + b’dr,

E&,” =a~fdu.+b’tdrr

E&~’ =a’’’du=+dcu’dcu

E&=v” =& ’dr=v

(5)

where the coefficients a’, b’, a“, b“, a“~, b’”, and c’ depend
on the existing stress aO.

As is customary in the theory of plasticity, the plastic de-
formations will be supposed to represent a mere change in
shape but no change in volume. Accordingly,

de=’’+ d%’’+ de=O=O (6)

This relation must hold independently of the vahws of da.
and duv. Thus,

a’+a’’+a’’t=O
and

b’+b’’+b’”=o

The elastic formulas, equations (4),
spinet ry of the coefficients appearing

(7)

(8)

exhibit a certain
on the right-hand

side. For instance, the coefEcients of da. in the second and
third equationa are equal, as are the coefEcienta of dcr in
the first and du. in the second equations. Which of these
symmetries, if any, mill be maintained in equatio~ (5)?
The existing state of stress singlEs out the z-axis, but it
does not matter whirh of the other two axes is labeled y
and which z. Accordingly,

afl _ ftr—a (9)

In view of equations (7) and (9),

1
atJ=a’t’= —– a’2 (lo)

These coefficients can easily be expressed in terms of the
so-called “tangent modulus)’ corresponding to the compres-
sive stress CO. Application of equations (4) and (5) to simple
compression in the z-direction yields (vi-ithdu~=())

=duz+a’du. (11)
or

where 1? denotes the tangent modulus. With

A=IZJE (13)
equation (11) gives

a’=~—l (14)

Hence, according to equation (10),

hText,the criterion for neutral changes of stress must be con-
sidered. .tiy given ir.dnitesimal change of strain can be
decomposed in the following manner:

de.=; (dc.+de,+deJ +; (2de.–de,–dg.)

de,=; (dc.+der+d~.) +; (–dq+ 2dC,–d~J

de.=; (dcz+d,,+d,J +; (–de.–deM+2deJ

d-rm= O+dTz,

dy,.= c)+d~,z

d7.z= O+d~,z

(16)

The chmge of strain defined by the first members of the
right-hand sides of these equations is a uniform expansion
(or contraction] in all directions. Such a uniform expan-
sion changes the vohnne but not the shape of the element
to which it is applied. The change of strain defined by the
second members of the ~~ht sides of equations (16), cm the
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other hand, affects the shape of the element but preserves
its volume, The work done by the existing stress or stresses
on the change of strain, equations (16), consists of the work
done on the change of volume represented by the tit mem-
bers of the right sides of equations (16) and the work done
pn the change of shape represent.edby the second members.
Since all changes of volume are supposed to be of an elastic
nature, it seems natural to speak of loading or unloading
according to whether the work CUJ7which the existing stresses
do on the change -of shape alone is positive or negative.
Vanishing of this work must thetibe interpreted as indicating
a neutral change.

In the case under discueaicm, the only existing stress is
u~= —ao, and the criterion for loading or unloading is fur-
nished by the sign of

dll’= –~ (2dez–de,–deJ (17)

while neutral changes are characterized by

2dez–&y–&s=0 (18)

Now, for unloading, the entire change of strain is of an
elastic naturo and equations (2) apply. Equation (17) is
therefore equivalent to

&dW= –~ 2(da.–v da,)– (–v du.+da,)– (–Y da.–v dcT,)]~[

(19)

Since a~>0, this expression will be negative, whenever

2du=–du,>0 (20)

This inequality, equation (20), is thus seen to constitute the
criterion for unloading. Similarly, the criterion for neutral
changes of stress is found to be

2disz-duv=0 (21)

Changes of stress which satisfy neitluw equation (20) nor
(21), that is, changes of stress for which

2dcrz-dq<0 (22)

must therefore constitute loading. Another definition for
the criterion for the three types of change of stress, which
is found by combining equations (20), ”(21), and (22), is that
the change of stress is cJassi6edby the sign of the increment
in the second invariant of the strew deviator, which measures
the intensity of stress. A detailed account of this alterna-
tive formulation is found in reference 10.

By a suitable choice of tha values of do. and daP, the
expression 2du,-dur can be made to fulfiU the following
inequalities:

0>2dc.–duP>—e (23)

where e is an arbitrarily prescribed small positive number.
All changw of stress satisfying equation (23) constitute
loading and are therefore accompanied by phstic deforma-
tions in accordance with equations (5). For c~O, however,

these changes tend toward neutral changes of stress for
which there are no plastic deformations. Furthcrmor~, thero
are no plastic increments of strain when 2dcz— duv>O. It
is to be expected that the total strain increments will be
continuous in the region which marks the transition from
unloading through the neutral state to loading. Al~kmgl~
such a statement does not follow specifically fronl the equa-
tions of equilibrium or compatibility, continuity should bc
expectec.-in the strain increments. With this assumption,
the plastic increments of strain, equations (5), should vanish
whenever the increments of stress satisfy cc~uation (21).
This furnishes the conditions

a’+2b’=0
1

a“+2b’l=o

~fff+2&ft=o 1 (24)

C’=o J
Together with equations (14) and (15), them cquatiom de-
termine all coefficients appearing in cquatim~ (5), WIW

.-

(25)

It is interesting ta notti that here again tho cocfIicients of
da. in the second and third ,equations are equal, as arc tho
coefficien~sof dur in the first and of dus in tho second cqure
tion. Whereas in the elastic case this type of symmetry ~
the stlrea9-stlrainrelations is a consequence of tie isotropy
of the material, this is no longer so in the case .of equations
(25). Indeed, the equality of a!’ and a’” (see equation
(15)) fo~ows from the assumption that the plastic deforma-
tions do not involve a cho.nge in volume. Tho equality of
b’ and a“, on the other hand, might be described rwalmost
accidental, the value of the ratio an/a’ being fixed by the
assumption just mentioned, while the value of the ratio
b’/a’ is fixed by the form of the condition for neutral change
of stress.

Combination of equations (4) and (25) flnaLlyyields tho
stress-strain relations which will be used throughout tMs

(26)
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It seems worth while to stress once again the assumptions
on the basis of which these stress-strainrelations are derived.
These are

(1) Plastic deformations do not involve a change of volume
{2) The criterion for loading or unloading is furnished by

the sign of the w-orkdW whk.h the existing stresses do on the
change of shape produced by the increments of stress
The first. assumption is commonly made in the theory of
plasticity (cf. reference 7, p. 10) and is confirmed by the
experiments of Bridgman (reference 11, p. 166). The sec-
ond assumption is a slight generalization of a similar as-
sumption which Prager (reference 10) introduced in the case
of incompr~ible plastic materials; more recently, it.has bea
used by IIyush.in (reference 6].

It is interesting to note how far the stress-strain relations,
equations (26], differ from those used in previous work on the
plastic buckling of pIates. In the present notation, Kauf-
mam’s stress-strain relations (reference 5) are

.&c&.= Adu.–tiu,

E&, = —Avdu.+dcw 1 (27)

U7.,= (1+N (1+ v)drz,

(The expression for dci is not given because this strain com-
ponent is not necessary for the determination of the bending
and twisting moments in the buckled plate.) It is seen that
here the coefficient of da, in the first equation and that of
da. in the second are unequal. In an earlier paper on the
plastic buckling of cylindrical shells (refenmce 12, footnote
1, p. 4.22) in which simiIar stress-strain relations -wereused,
Kaufmmm comments on this Iack of symmetry, recommend-
ing that the stress-strainrelations, equations (25), be checkecl
by experiment. Site this type of symmetry in the present
stress-strainrelations, equations (26), has been characterized
as almost accidental, the lack of symmetry in Kaufmann’s
relations hardly constitutes a sufficient reason for discarding
the stress-strainrelations, equations (27). It is not. difficult,
however, to show that these relations cm-respond to an un-
acceptabIe condition for neutral changes of stress. Indeed,
subtraction of the elastic increments of strain, equations (4),
from the total increments of strain, equations (27), yields
the following plastic increments of strain:

El&”= (x– l)du=

Z&L,’’=v(x- l)du=

1

(,28)

G%”= (A– 1) (l+p)d~zr

Thwe plastic increments of strain vanish if

dcr==o

}
~29)

dr=,=o

According to Kaufmann’s stress-train relation, neutral
changes of stress axe characterized by the two conditions
given as equations (29). If the most general change of stress
considered here is represented by a point with the.coordinates

dr,, dur, and dr,r in a three-dimensional space, the comlition
of equation (21) represents a plane through the origin which
separates the “region of loading” from the “region of urdoad-
ing.” Equations (29), however, deiine a straight line which
does not mark off two such regions.

Ilyushin (reference 6) conside~ an incompressible material
and assure- the stress-strain relations for loading to have
the form

(30)

where u is a function of the intensity of stress r: defied by

/2Uf= >u=+ uv~—UZU”+3T=”2 (31)

For loading, the increments of stress and strain are then
connected by

&de.= 2(& (
2drz-du,-2~ da

))

For buckIing from a state of uniform compression u== —uO,
in particular,

du=~t du,= – : (,2du.–du,) (33)

Equations (32] then reduce to

a’r=2(1:u1z (l–u–JuO) (2du=–du,)

[
E&, =–2(l:a)2 ( l—(o+2a@’)da.+

[ 1}
2(1+ + duP

J%&=&U drzr

(35j

For unloading, the relations, equations (2), are supposed to
hoId with v= 1/2 on account of the assumed incompressibility
of the plate material:

EWE==; (Zdu.–du,)
1

E&=; (2du,–da.)
)

(36)

Ej&.,=3drw J

& to the criterion for loading and unloading, this is again
supposed to be given by the sign of the expression

dW= uJE,+ u~ev+ r&yw (37)
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In particular, it is given by the sign of

—urjdez (38)

in the case of buckling from a state of uniform compression
U*= —al). In view of the first of equations (35), this means
that neutral changes of stress are again characterbed by
equation (21). It is easily ieen, however, that for 2du.—
dur=O, equations (35) and (36) do not give the same incre
ments of strain. Ilyushti’s streawAmin relations are thus
seen to exhibit an objectionable discontinuity along the
surface 2du.–duv=0 which separates the region of loading
from the region of unloading. A more detailed analysis of
the effect of this discontinuity in the case of a buckling plate
is found in appendix A.

FUNDAMENTAL EQUATION OF PLASTIC BUCKIJNG OF A
SIMPLY C43MPEWED PLATE

The technique used in the derivation of the fundamental
equation of the plastic buckling of a simply compressed plate
is quite similar to that needed for the same problem in the
elastic range. (See, for example, the more general problem
of combined bending and compression of eIastic plates in
reference 1, p. 302.) There is one essentisddifference, how-
ever, in that the stress-strainrelations given in equations (26)
must be used in the regions of loading rather than generalized
Hooke’s law. Consequently, the middle pkme of the unbent
plate wiIl no longer play the role of the neutral surface in the
buckled position. Once the position of the neutral surface
has been found and the bending and twisting moments deter-
mined as functions of the second derivatives of the deflection
of the plate, the equilibrium conditions and the flmd differen-
tial equation can be derived in exactly the same fashion as
that used by Timoslmnko in reference 1.

It will be found more convenient, in the foIIowing discus-
sion, to use ‘[reduced stresses” rather than actual stresses,
that is, stresses reduced by dividing the actual stress by
Young’s modulus &. I’Jonew notation will be employed to
denote these reduced stresses; therefore, care must be taken
in interpreting the results obtained here in terms of the
known facts for elastic buckling, An attempt will be made
at such points to keep the notation clear. In addition, the
use of differentials of stress and strain may lead to some con-
fusion in deriving the equations of equilibrium for an element.
Since the stress-strain relations given in equations (4) and
(26) are linear in these differentials, both sides of the equa-
tions may be divided by &>O, where tmay be regarded as
the time. It should be noted that tappears homogemmdy;
that is, the time scale may be arbitrarily distorted without
changing the equations. If differentiation with respect to t
is denoted by a dot, equations (4) and (26) can be rewritteD
as reduced stress-strainrelations, for 1~’z O,

i==Mz- (’+%9’,

COMM-mEEFOR

and for W= O,

(40)

where Jj-= dwjdt.

The stress rates d, and d, can be found in terms of the
corresponding strain rat- for loading by salving the first two-.
of equations 739). Thus,

‘i’= (5-4~j~l(~_2V)z I(~+3)~z+2(A-l+ 2~)4J

‘iy=(5-4V)X~(l-2Y)’ ‘2(A–1 ‘2v)iz+4Ai’]

The criterion for loading

2k=– tip<o

can then be written as

(5–4V):– (I–jv)i [(z–’)~s+ (2V–l);,]<O

(41)

(42)

(43)

Now, Poisson’s ratio usatisfies the inequality—1s V= 1/2 (cf.
reference 13, p. 104); in addition, ~> 1. ConacquenLly, tho
expression appearing outside the brackets is always positivo
and the inequality, equation (43), can be replac~d by

(2–v)2=+(2v–l)i,<o @g

The strain rates appearing in equations (39) and (40) must
now be evaluated. The strain rates in the middle surfnco
will be denoted by 41=+(x, y), the normal strain rute in h
wdirecticm; &..=i2(x, y), the normal strain rate in tho y-
direction; and +=~(z, y), the rate of shear strain. Points on
the normal to the undeformed middle surface arc assumed tu
remain on the normal of the bent middIe surface. This
implies that the strain rates {., & and ?W at any point of
the plate. can be writtan in the following form:

&=&-zK~

-}

.

kti= ii—ZKZ (45)

yzw=+—als.-

The quantities K,, ~,, and & nppenring in equations (45)
are defined in terms of the rate of deflection ti=ti(z, ~) of tho
middle surface in the following way:

(46)
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GeometricdIy, ~, and ~, represent the rates of curvature
of the middle surface in the/- and y-directions, respectively,
whereas K12 represents the rate of rdat ire twist. The cri-
terion for loading, equation (44), can now be rewritten in
terms of the strains of the middle surface and the quantities
h-,, h“~,and l& It is seen that loading takes place provided

(2–06 + (2- W2<4(%NL+ (2-1)A31 (47)

‘i’ilth theword “sign” to denote the sign of the quantity within
the parenthesis and vertical bars to denote the absolute.
value of the enclosed expression, the last inequality may be
transformed into

This inequality can be simplified further by introducing two
new quantities & and 20defined by

The inequality, equation (48), becomes then

z sign

that is,

z>% for positive h“

Z<% for negative K }
(51)

The surface Z=ZO separates the regions of loading and un-
loading in the plate; a given part is in a state of loading or
not according to which condition of equations (51) is satisfied.

The criterion just developed must now be applied to the
problem of buckling. As mentioned previously, tho stress
distribution of the buckled plate diflers from the original
state of pure compression by certain additional stresses
&A-Zt,&@, and ;=~t. These new stresses are such that their
total stress resultants must vanish and the moments pro-
duced wiIl be in equilibrium vrith the moment. generated by
the original compressive force in the buckled plate. The
vanishing of the stress resultants will lead to a formula for
ZOin terms of the constants of the material and the value of
u,. Once this equation has been developed, a rather straight-
forward computation will lead to the desired equation of
equilibrium.

The rntesJ$, and .i~yof the stress redt ants are defied as

(52)

As indicated in equations (51), two cases must be considered
according to whether &O or lK<O. For K>O, direct
computation shows that

‘i-u=’J+cK(H’ ]

where the quantity c is a function of A and v given by

h– 1
c= (5–4)X– (1–2V)’

(53)

(54)

Appendix B contains the details of this calculation and others
used ~ this !ection. It has been pointed out previously
that h’, and N, must vanish. ~ccording to equations (53),
this yields

Thus the strain rates a and & in the middle surface are
rekted by the equation

From the definition of ~ equations (49), and thii rewdtt,it is
seen that

(57)

This result may then be substituted back into equation (56)
to yield

()h 2 2cgh 2ZJL
g—al -~= —@_4j) (58)

Relation (58) can be wived for 4 to yield the equation of the
neutral surface which separates the regions of loading and
unloading. Since h, c, and v depend only on the geometry
of the plate and the applied oornpressive stress, ~ will
depend only on these quantities. It is more convenient to
introduce a new quantity to defined by

(59)



488 REPORT946—NATIONALADVISORYCOtifiEE FOR AERONAUTICS

Then the quadratic equation for 2., equation (58), becomes a
quadratic equation in ~o,namely,

(1–to)’+c(54:4,) ‘o

There are two soIutions to this equation,
only one which is physically realizable is

fc)=ro+=a+ @=i
where

2~=1—
C(5—4P)

(60)

in general, but the

(61)

(62)

Equation (61) gives the cbired formula for the neutral sur-
facll

When K<O, the procedure is exactly the same as that out-
Iined. Again the details are found in appendix B. The
formula for the neutral surface is given in this case by

~o=~o-=-_a– R- ‘(63)

Roughly speaking, the sign of K indicates whether the plate
“buckles up” or “buckles down.” Consequently, the differ-
ences in sign found by comparing equations (61) and (63)
are quite natural. It would also be oxpocted that the rates
of change of the bending and twisting moments, as well as the
resulting equilibrium equation, should be independent of
the sign of K. This will be shown to be true.

The rates of change of the bending and twistipg moments
can be computed now tlmt % or to is known for K>O and for
K<O. The rates of change of tlm bending moments, ill,
and A$V,are defined as

(641

where the momenta are taken about the y- and z-axes,
respectively. The rate of change of the twisting moment

il$,, is given by
---- .- .—

sM=,=-_:2+Zuz(fz (65)

The calculation of the ratee, equations (64) and (65), must
be carried out separably for ~>0 and ~<0, It can be
shown that the only quantity appearing in the final result
which depends on the sign of K is the function 6 defined by

[ 1
J=* 1–~ ~0++~ ({0+)’ for lZ>O

[ 1

(66)
3 -~ (~o-)’ for k<Oii=; 1+2 to

1

According to equation (63), ~!== –ro+; the numerical value of
3 obtained from equations (66) will ther~for~be the s~mc in
either case. Thus the expressions for M,, MU, and M., will

be the same in both cases. The details arc found in appendix
B in which it is shown that

tiz=~” ‘a12(1–V’) ~R’[l
–c6(2–v)q+k2[v–c6 (2–v)(2v–.l)]}

(07)
.

fi& -12(f=n {kl[v–c3(2–v) (2P–l)]+k2[l–c6 (2v-l)~j}

(68)
.

“ [(+K”I‘~=12(1–v2)

The equation of equilibrium can be seLup in Lcrmsof t.ho
bending and twisting moments and comprcwsiveload without
reference to the stress-strain relations. This has already
been done by Timoshenko (reference 1, p. 305) for the more
general case of combined bending and tensionor comprcssiom
l%s ri%ults may be applied to this spocinl case of a simply
compreiscd plate. With the present notation, tho equation
of equilibrium is

h’h$ “,, ?#il$ -_N ?@
(70)

= @&-#
ax~ . ‘ bxn

Timos~enko’s relation was originally written in tarms of the
actual bending momente and actual compressive stress re-
sultant IVzrather than the rates of the reduced quantities.
Timoshenko’s equation can be differentintwl with rcspmt
to time and divided by & on both sides, so that equation (70)
is the desired equation of equilibrium providecl N* is ddlncd
as .-

.—

Nz=ff&/G .(71)
From equations (46),

K,= ?W@x2

&t=a’ti/a~~.

K,,=2ww/bzay

With theso relations and equations (67), (68), and (69),
equation (70) may be rewritken m

Dllwzz,z+ 2Dutizwn+D22wvvuu= – u&wzz
...—.

where the subscripts denote partial differentiation
spect to the variable named and

D,,=D [1–C6 (2–v)~

D,,=D [l–Cd (2–P) (2u–1)]

D22=D[1-C8(2P-1)2]
1

(72)
.

wilh rc-

(73)

h’1$
‘=- -J

The quantity D is the well-known floxurril rigidity of the
plate. Equation (72) resembles the equation for tho buckling
of an anisotropic plate (reference 1, p. 380). There is onc
important.difference, however. In the case of an anisotropic
plate, the coefllcients Dll, D~n,and Zln arc conshmts of [ho
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materid; for the plastic case &, DU, and & are functions of
aO. In other words, the plate is aniaotropic but this aniso-
tropy is caused by and is a function of the compr-ive stress.
Consequently, certain changes must be made in the standard
procedure for calculating buckling loads for anisotropic
plates. Several examples illustrating this technique are
given in the succeeding sections. Graphs of the quantiti~

D,,’= 1 –C6(2–V)Z

Du’= 1–c6(2–Y) (2v–1)
and

D=’= 1–c6(2v– 1)2

as functions of X for v=O.32 are given in figure 3 and the
numerical values are listed in table-I.

TABLE I
VALUESOF D1l’,DIZ’,LYD L&’

FOR,= 0.32

A

1.0

!::
1.6

H!
25
3.0
il.5
4.0
4.5
&o
& o
7.0
&o

It8

h’

1.Cnxlo
.W30
.G%-
.S?s4i
.%$73
.7.563S
.69W
. bun
.60346

:=
.62544
.49104
.46459
.44305
.42652
.41Z6

Du’

.5
\ ~ 1 1 1 I 1

\ \ PCtffL?-U)r-Di, ‘

l-i-t-t- -
.4

A
FIG1:RE3-+raPhs of Du’,DE’,and k’ as functionsofAfor v-O.32.

TYPICAL BOUXDA12YCONDITIONS FOR TEE FUNDAMENTAL EQUATION
Fo13 A S131PLy 00.vPEESSED PLATE

The discussion of the boundary conditions for the buckling
equation, equation (72), is facilitated by expressing the
moment rates l~z, .il~r,and .il~.win terms of the second deriva-
tives of the deflection rate b and the stiffmsses 1111,Zlu, and
& ~troduced in equations (73). Thus, it follows from
equations (67), (68), and (69) that

&~l, = –D&2-[~,2- (1 –v)~] I&

IZ& = – [~,2– (I –P)D] z&-Digwy, 1 (74)

EJLH=D(l –Phi.,

The following bouudery conditions are typicaI in the buckling
of rectangular plates:

(1) Siiply supported ~dge at x=O. The deflection rate
ti and the moment rate Jf, must vanish at this edge; that is,

W=()

}
(75)

–Duzb..-[Dw (1–v)D] &,=O

for x=O.
(2) Built-in edge at x=O. At this edge, the deflection

rate w and the slope rate ti= must vanish; that is,

W=o

@==(j }
for x=O.

(3) Free edge at-~=0. For a free edge, the
bending moment lf, and of the equivalent

(76)

rates of the
shear load

(–2b3~@x) + (bJiXi~Y) must vanish (reference
Consequently,

[D,,– (1– v)D]ti.r+DHtiyF= O

[D12+ (1–v)Dltixz,+&ti,,r= o }

for v=O.

1, p. 300).

(77)

(~) Plane of symmetry at y=O. If the buc~ed shape of
the plate is symmetrical mith respect to the plane y=O, the
rates of the slope tiJ and of the equivalent shear load

or
&=()

w“””= o }

for y= O. Should these boundary
other edges, the necesa.ry cha~~es
made easily.

several examples of the buckling
pIate with various bounda~ conditions of tl~~‘type just dis-
cussed are considered in the next section. In all these es-
amples it.is assumed that the plate is in the state of compres-
sion previously described, uS= —ro, and that the edg=

(79)

conditions be given on
in the formulas can be

of a simply compressed
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z=a and z= O,perpendicular tQthe direction of tlm compres-
sive force, are simply supported. The other boundary con-
ditions are specified for each example. Equations (75) are
satisfied at x=O and x=a if the deflection rate is written
in the form

ti=.f(y) sin (mzz.z/a) (80)

where m is an integer. Thus a section of the plate in the
buckled state, obtained by setting y= Constant, is described
by a series of sine waves; the integer m gives the number of
half waves. Substitution of this exprgs$on for w into the
partial differential equation, equation (72), -yields the cmli-
nary differential equation

(m~/a)4D,,j–2(m~/a) ’D,,j’’+D2,j’’= a~(ma)aj’j (81)

in which the Roman numerals denote the corresponding de-
rivatives with respect to y. With

equations (82) can be written in the form

j“-2py’+p2(p~–g2) j= o (83)

The general solution of this quation bj(y) is

j(ll)=c~ co~ W+@ s~ w+c~ COS8~+C, Sin #y (84)

where cl, c2, cS,and c’ are arbitra~ constants which must be
determined from the boundary conditions, and

r= ~p (g+p)

1
(85)

8= ~p ~—p)

Equation (84) is the fundamental relation which must be
studied for each particular case of buckling from a state of
simple compression. The boundary conditions of the type
discussed lead to linear homogeneous equations for the con-
stits Cl,Cz,catand C4. The condition that these equations

possess solutions cl, c~,c~,and c’ Jvhichare not all zero yields
an equation in r and s from which the critical st.rcssr. can
be determined.

SPECIFICEXAbf~LZS

PIastic buckling of a narrow strip; relation of present
It seems worth whiIe to inwstigatotheory to beam theory,—

how the present thcwry of the plastic buckling of plahs is
related to the Engesser-Von Kdrm6u theory of the plastic
buckIing of beams, Clonsider a rectangular plate of tllicl{-
ness h ivhich is simply supported along z= O and z= a., frco
along y=+ b/2, and under the comprcssivo strcsa at= —u~,
As b~O for a fixed value of a, the buckling condition for
this pIate might be expectid to approach that of a beam
which has the length a, is simply supported at its two ends,
and possesses a rectangular cross section of height h and
width b.

The solution given by equation (80) automatically fulfills
the boundary conditions at z= Oand x=a. In addition, the
symmetry condition along y=O, equationa (79), requires
that the coefficients in equation (84) satisfy

TC2+SC4=o (86)
and

7’8C2-83C4= o (87)
~ccordingly,

C2=C4=0 (88)

if the function j(y) is not to vanish identicdly. Boundary
conditions, equations (77), for a free edge along y= b/2 fur-

(89)

The boundary conditions corresponding to a free edge at y= –b/2 are fuilled automatically if equations (89) are satisfied.
Now these relations are linear homogeneous equations in c1and &; if they are to have nonvanishing aolutions,th determintmt
of the coefficients must be zero. Therefore,

@Lm2T2
I

~ [llr— (1—v)D] cosh $’
{ }

ab
– D2a4’+m# [D,,– (1–v)D] COS~

{ }

=0

–m; [Dn+ (1–v)D] SiIdl ;r W- s {D#+m~T [Dlg+(l–v)D]} sin #

This determinantal equation can be reduced to the form

(#’–m2~2B2Q)2~tiu ~+ (T’+ m2+R’Q)’g tanh $= o

(90)

(91)
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where
R= b/a

~ =rb=by’p(q+p)

1

(92)
~ =sb=bl$(g-p)

Q=[D,,– (1–lJ)D]/D99

If, for a fixed -ralueof the span a, the width b of the pIate
approaches zero, R and hence .$and q tend toward zero too.
Accordingly, the functione f tanh ($/2) and q tan (q/2) ap-
pearing in equation (91) may be replaced by f’/2 and #/2,
respectively. For m= 1, in particular, this relation can be
reduced to

kD~’ –Mlqs’~-Du’*+ ~DH’2=0 (93)

in which the followitqg notation has been used

D,,’= D,,/D I

D,,’=DJD
}

(94)

DE’ = D,,/D

A= (,D,,’DM’—D,*’T fDB’2J
A detailed developrneut of equation (93) is presented in ap-
pendk C. If the plate under consideration buckles within
the elastic range, D,,’=DM’ =Dn’= 1; consequently, A=O
and Q=v. According to equation (93) then, k= l–& and

(95)

The compressive force F’= r06hunder w-hichthe plate buckles
is thus seen to equal

~=#h3bG #EI
~=~ (96)

where 1= bhs/12 is the cross-sectional moment of inertia.
Equation (96) is Euler’s formula for the elastic bucldi~mof a
simply supported beam of span a.

If the plate buckIes after the compressive stress UOhas
exceeded the limit of proportionality, the evaluation of equa-
tion (93) becomes more difiicult. ~ot~u the relations givel~
in equations (94), equation (93) can be transformed into

k= D1l’–~DB’ (97]

For V= 1/2, this relation can be handled quite simply. A
straightforward computation (see appenclk C) yields tho
folIow@ result for the critical compressive stress am=rO:

The critical buckling load P is given by

(98)

(99)

where again l= bh8/12is the cross-sectionaImoment of inertia.
Hence the reduced modulus E’* is given by

G 4&!r
‘*= (l+ J) ’=(IE+ @y

(loo)

according to the definition of Agiven by equation (13]. This
reduced moduhs is identical with that found in the Erqysser-
Von Kdrmtfn theory of the buckling of beams beyond the
elastic limit. (See references 2 and 3.) Thus in the case of
an incompressible material, r= 1/2, the critical load for a beam
can be found as a limiting case from the theory of plates.
It should be noted that, within the framework of betun
theory, the critical stress is independent of the vaIue of
Poisson’s ratio V.

This result is not necessarily true for materials which are
not incompressible, P# 1/2. The quantity

(101)

which is simply a constant multipIe of the critical stress for
a given pIate, has been evaluated as a function of A for the
case just mentioned, V= 1/2, and for a material with P= O.32;
the results are pIotted in figure 4. Although the two func-
tions agree at A= 1, as previously proved, there is a marked

if%

/.2

}.0

\

V-O.5

.8

.6 T

.4

2

A
FIWJES $.-The qmmthy k/(1-@J ae n [unctfon ofx for two harm having the same shaLw but different valu of P.
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difference which increaseswith imreasing va.hwaof h. Con-
sequently, two beams of the same shape but with diflerent
values of Poisson’s ratio will buckle at diflerent critical
stresses. -.

At, first sight, these results ‘may seem somewhat cont~dic-
tory since the analysis of plates deveIoped herein is a gener@i-
zation of the Engesaer-Von Khmtln theory of the buckling
of beams and yet this theory does not always appear as a
limiting case of the present analysis. An explanation of this
discrepancy is aflorded by a closer examination of the posi-
tion of the neutral surface ~ as a function of the parameter X.
The function ~ depends on the plate thickness h and on v
and h. The limiting process.considered does not affect. this
relation and the neutral line in the beam is determined by
the intersection of the neutrtd surfaca in the plate and the
vertical plane y= C?onstant. .The neutral line so determined
need not coincide with the neutral line determined .-directly
from the theory of beams, This difference is the basinof.tlw
discrepancies in k/(1 –Y) noted.

According to equations (49), the function % ia given by

where
k= (2–P)I?,+ (2v–l)k2

The quantities i, and iz are the strain rates. in the middle
surface in the x- and y-directions, ~espectively. For the
srnaIIdisplacements studied herein, K1 is the rate of curv~
ture of thtiline of intemection of the pIane y= Constant and
the middle surface. Similarly, ~2 is the rate of curvature
of the line of intersection of the plane z= C!onstant and the
middle surface. In general, the position ~f the n~utral sur-
face depends on the four quantities il, i~,& and K~ and this
holds in the transition from plate to beam. On the other
hand, the Engesser-Von K@nfin theory of beams assumqs
that the position of the neutral line depends on 41and ‘K1
alone. (See reference 1, p. 158.) The position of the neu-
tral line will depend on the type of analysis used. Specifi-
cally, it can be shown (see appendix C) that the position of
the neutral line found by considering the intersection of
the neutral surface and a pIane y= Constant and the position
determined by the Engesser-Von Kdrm4n method agree if
and only if v=I/2. Therefore, it ia to be expected that the
transition from plate to beam is valid only under this con-
dition.

Buckling of a simply supported plate.—The critical load
for a simply supported plate under edge thrusts, stressed
beyond the elastic limit, has been discussed by Timosh@o.
(reference 1, p. 387) on a purely formal basis.. .Tlue object
of this section is the development of .an analytical formula
for the critical stress of such a plate on the basis of equation
(72) and the subsequent comparison with Timoshenko’s
results.

According to equations (75), the boundary conditions for
a plate simply supported at all four sides can be written in
the form

w= o

}
(102)

–D*lti.=-[D,2- (1-v) ~”ti,,=o

at z= Oand z=a, and

W=(l,

}
(103)1

–D’’ti,,-[D,,– (1–P)qi..=o

at y=O and y= b. The boundary conditions at x=O and
z=a are fulfilled automatically if the function w is of the-
form given by equations (80) and (81). Equations (103),,
applied to the function j(y) at y= O, require that

Cl+ca=o

()–D22(@-8’cJ + ‘== ‘[u,- (1–V)D] (C,+CJ =0 I (104)

Consequently,

cl=—c~

/
(105)

Ca(r~+~z)= o

thus

C1=C3=0 (106)

since F+t12#O if buckling is to take place.
The fionditions at y= b imply that

CSsinh rb+c, sin sb=()

–Dz2(r2cz sinh rb–&c, sin sb) +

“}.

(107}

.( )
~ ‘[D,2–D(l –V)](CZsinh rb+c, sin sfi) =0

which are equivalent to

CZsinh rb+cA sin sb= O

I
(108)

Pcz sinh rb–s’ch sin ~b=0

Now these equations are linear, homogeneous equations in
the two unknowns G and CA;they possess nontrivial solutions
if and only if

&h rb sin 8b
=– (r2+@) sin sb sinh rb=O (109)

~ sih rb –s’ sin sb

This comhtion will be satisfied if r2+s2=0, r=O, or s= nr
where n=O, 1, 2, . , . , The first possibili~y is untenable;
the scud implies, according ti equntions (108), that s= 0,
lr)2u, . . . . If s=O, then from equations (108) r musttalso
vanish.sncl buckling will not take place. The buckling con-
dition must therefore be s=nr where .n= 1.,2, 3, . . . .

Since .s= ~=j from equations (85), it follows from
equations (82) that

#T2
82=-y-

b
,.

=P Q.?-P) —
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With the uotation of the previous .wctio~ for &’, ~lz’, %’,
and A, this relation can be written as

“The critical stressu= can then be fougd by d~ect computation
to be

~ow each of the terms in the first parentheses on the right-
hand side is positive; consequently, the minimum critical
“stresswill occur when n= 1. Thus the critical stmss isgiven
by

In the elastic case, A= 1 and the functions appearing in the
formula for the critical stress take on the values D1l’=
Dl,’=llu’= 1, A= O; consequently,

(114)

This result is the same as that found for the elastic case
directly (reference 1, p. 33o). Timoshmko suggests (refer-
ence 1, p. 387) the application of the following equation for
the buckling of a simply supported plate compressed beyond
the dastic limit.,

D(atif,r.x+ 2 \ aHBr+ li’J +N.ti=r=o (11.5)

where here a= E*/&, the ratio of the reduced modulus
(defined in equation (100)) to young’s modulus. ‘Under
these assumptions, the critical compressive stress is found
to be

(116)

Although Timoshenko (reference 1, p. 387) gives only the
critical stress for the half-wave number m= 1, his results can
be easily extended to the form given in equation (116).

It will be found more convenient to use a new quantity ~
rather than u~ for comparison of the two theories. This
parameter is a moclifleclform of k defined in equation (94);
more precisely,

~=:k

a,,b’h
= a-”

(117)

.

For the theory proposed in the present report, this quantity
becomes

——

(/ r)‘*’‘+ Da’Am’R’ (118)Z=Du’ ~~ ~ ~+mR ~ Dm’

where R =b/a$ as before. In the elastic case, ~ takes the form

(119)

On the other hand, Timoshenko’s result can be written as

(120)

The diikences in the two results appear more readily if equa-
tions (118) and (120) are expanded in full. After some simpli-
fications, equation (118) becomes

Z= DllIm’R’+2D,,’ +% (121} “-‘-

while equation (120) takes the form

(122)

It is seen then that ~ is the same type of rationrd function of
W?R2for both theories except-for the fact that the coefficients
are different functions of k.

~~nlikein the case of the cruciform section which is treated
in the next section, the computations involved in evaluat’hg
~ as a function of A and mR are relatively simple since tlie
coefficients D1l’, DE’, Din’, and CYcan be tabulated once for all
independently of the stress-strain law and the particular
geometrical ratios under consideration. The critical values of
~ can be found with reasonable speed by the foIlowing pro-
cedure. Curves of ~ against k can be obtained for various
values of the parameters m and R by e-ialuating equation ““””
(121) or (122), depending on which theory is used. These
results, which form the bulk of the computation, do not
depend on the stress-strain law but ody on V. Conse-
quently, the curves of ~ against h thus found are valid for all -
materials having the same Poisson’s ratio. On the other “”
hand, ~ and Aare related by a second equation which depends
on the stress-strain law; namely, from equation (117),

Since u= is a function of h, determined by the given comprm-
sive stress-strain law of the materitd in question, ~ ahw can
be plotted as a function of Aonce the plate width-to-thickness
ratio b/h has been fixed for a particular example. If these
curves are plotted on the same sheet as those previously
described, the intersections will give the critical value of
~, and hence the critical strew, corresponding to a given
stress-strain law and given plate parameters b/h and R. It
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should be noted that ~ depends on the ratio b/hin the plastic
range, whereas this is not the case within the ordinary elastic
theory.

Since the qutmiity ~ enters into the computations for the
second set of curves through the stress-strainrelations, it is
quite useful to represent the strew-strain curve analytically.
An expression of the form

e=&r+Acrfl (123)

has been fitted to the experimental data in such a way that
the experimental and theoretical curves pass through the
same initial and final points and the slopes at these points
coincide. The fitted curve together with the experimental
points is shown in figure 5.

Tho computational program described has been carried
out for the material given in figure 5 and the ratio of plate
width to plate thickness Iixed at bz/h2=1000. The solid
curves of figure 6 give ~ as a function of A with parameter R
as defined by equation (121), each set of curves representing
a different value of m. These curves can be applied to a
plate with any ratio of b/hand any compressive stress-strain
law provided v= O.32. The dashed lines, on the other hand,
represent the relation between % and x given by equation
(117); they correspond to &/1#= 1000 and the stress-strain
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curve of figure 5. The points of intersection have been deter-
mined and the critical values of ~ plotted in the usual fash-
ion as functions of l/R in figure i. Timoshenko’s results are
tdsoshown as well as those ~or the elastic theory. Since the
critical stress is given by k multiplied by a constant, the
interpretation of these curves of ~ against l/R holds equally
well for the critical stress as a function of I/R.

First, it should be noted that the plate will buckIe in one or
more half waves according to the magnitude of the ratio
1/R=a/b; this holds for plastic buckling as well as elastic
buckling. Furthermore, it is necessary to consider only that
part of the cur~e corresponding to a gi~en -ralue of m which
lies below the intersections with curves belonging to adjacent
values of m. T_Jnderthese conditions, it can be readiIy seen
that the critical stress obtained from the present theory lies
between the results of the ehwtic analysis and Timoshenko’s
formal procedure. llore precisely, the elastic critical stress
is higher than that predicted by the present theory, whereas
Timoshenko’s buckling stress is lower. The transition from
a buckling mode with a given number of half waves to the
next higher occurs at practically the same dues of l/R in
both plastic theories; whereas, this transition occurs at
slightly larger values of l/R in the ekistic rana-. Finally, the
10CUSof minimums of all three sets of curves is, to a high
degree of approximation, a straight line. While this straight
line is fiwd for sII -dues of b/h in the elastic case, it will
shift in the plastic case as this parameter is changed.

A
(d)ln=4.

With a slightly diEferent computational procedure, the
results just. obtained for the buckling of a simpIy supported”
plate by the present theory can be compared with Ilyushin’s
solution of the same problem (reference 6). Ilyushin’s gem-
eral equation for the buckling of a rectanguhr plate ronw
pressed in one direction is of the same form as equation (72)
except.for the difference in the coefficients. His fundamental
rdation can be vmitten as

D,1*w~z=+2Dfi*zii..,, +Dti*ti,,,,= –hro$~.. (124)

where the coefficients ~11*, llu*, and llM* are rather compli-
cated functions of the stresses which will be discussed
shortly. Since these results apply only to incompressible
materials, the theory developed in the present report must
be s~ecialiied to the case for which v= 1/2.

For the case of a simply compresed plate, the basic func-
tions entering in the definition of the coefficients in equation
(IZ4) can be given in a slightly less complicated manner than
that used by Ilyushin for the more general probkyn. Let
E, denote the “secant modulus,” that is, quotient of the “-
compressive stress chided by the compressive strain as
obtained from a compression test for the material in question.
Then Ilyushin’s function a can be shown to be
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where & is Young’s modulus for the material, With Von
K6rm6n’s modulus J?3*as giyen in equation (100), a new
qUIiLItity,K maybe defined by setting

K=E*/~ (126)

The function ~ will be used to designate the.following relation
containing K and a,

The coefficients ~11*, D12*,and ~w* camthen be shown to be
of the form

Du*=D(l-#) (1–: l;:;K
)

D,,”= D(l–+)

-}

(128)

D=*= D(l–*)

where ~ is the flexural rigidity of the plate defined in equa-
tions (73). It should be notod here that llyushin’s cocffL-
cients depend on the two moduli 1? and E,, whwws thoso
appeariyg in the present theory depend only on LhottmgcnL
modulus E or rathw the ratio h= E/EO, Consequently, it is
extrerndy difficult to carry out the larger part of the corn-
putatims for ~ ~dependcntly of the stress-strain law as can
be done with~he method presented herein. Tho numerical
technique must therefore be changed somewhat,.

The boundary conditions for the simply supported plate in
Ilyushin’s analysis are

w= o

~.
}

(129)
—D,, *wu—~ Dn*wfiv= O

at z=O and x=a.j and

w= o

1

(130)
–; D*g*liJ=z–DB*wVV= O

,,

at y=O and g=b, These boundary conditions am com-
pletely analogous to equations (102) and (103), provi~hxl
Poissorr%ratio v is taken to be 1/2 in the Lquations (102) and
(103). If the new quantities~,,, ~,,, and ~U are introduced
in the following manner

D, I= Dll*/D
.

Dl,=D,a*ID

}

(131)

~a=D=*/D

the critical parfimeter ~ can be found in precisrly the same
fashion -as that used in developing equation (121). Con-
sequently,

322k=~,lm’R’+ 2~1,+~~~ (132)

_As has been previously noted, the coefficients ~,1, ~u, and.
Dm are functions of both the secan~modulus and the ttmgtmt
modulus with the result that specific reference to the st.rcss-
strain law in compre~ion must be made in ordm to evaluate
equation (132) readfly. The critical ciuantity ~ has bcxm
computcd as a function of a,, for the material shown in
figure 5 with rn and” R appeming as parameters. l’or a
given width-to-thickness ratio b/h, ~ can be dchmnined by
finding the intersccticms of these curves with the stmight
line defined by equation (I 17), This procedure has bcun
applied to tho case b2/h2= 1000 previously discussed. Tho
resultsobtained from Ilyushin’s method and from tho present

method with v= 1/2 are shown in figure 8. Again consider-
ing only those parts of the curves which lic below the.int~~r-
section points corresponding to consecutive vahms of m,
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certain generaI conclusions can be drawn. The minimum
value of ~ as determined by I1yu&in’s method is practically
constant for all values of m as has been seen in the other
theories considered. On the other hand, Ilyushin’s theory
predicts smaller values of ~ and hence lower critical stresses
than those of the present.theory. Comparison with figure 7
would indicate that Ilyushin’s criticaI stresses lie roughly
between those of Timoshenko and the present theory.
Finally, buckling occurs at practically the same wave number
in both theories although the jump in form takes place at
slightly smaller values of I/l? in the present theory.

Torsional buckling of cruciform sections,-The torsional
buckling of a cruciform section under compr~on can be
studied by treating each flange as a simply compressed plate,
simply supported at y=O and free at-y=b. (See reference 1,
p. 340.) b in the previous case, the deflection rate w will
be given by equation (80) where~(y) is found from equation
(84). The conditions for the simply supported edge (equa-
tions (75)) at y—= become

c~=—c~

1 (133)
f “(0)=0

The last equation impli~ #cl=&ca. Siice Cs=-cl and #
and F do not vanish, CI=G=O; consequently,

f(d=c2 Sinh ry+c, sin Sy (134)

Finally, the boundary conditions at the free edge y= b
require, according to equations (77), that

Dn(r%, sinh rb–+c, sin sb) =0

()–~ ‘[l),,+(1–P)D] (rc, cosh rb+sc. cos d) +

Dn(?c2 cosh rb–s%, cos sb) =0

(135)

in the t.w; unkno&s ~z and
yieId nonvanish~ solutions,
cients must vanish; that is,

NTOWequations (135) are linear homogeneous equations
ct. If these equations are to
the determinant of the coefli-

al

%

b,
= 0

b2
(136}

.—_
where

al= @tir2— {m2#[D12— (1— v)D]/a2~) sinh rb

6,= – (D22s’+ { m’#[D,,– (1–J~]/aZ)) sin sb

a~= r(D@- { m2#[DlZ+ (1 —~)~]/an)) cosh rb

b,= –@ln#+ { m’#[D,2+ (1–v)D]/a’]) cos 86

Except for a systematic interchange of the hyperbolic and
trigonometric functions, the determinant in equation (136)
is the same as that appearing in equation (90]. The de-
terminant al equation can then be reduced to

.. . . .

(137}

Whh the notation introduced in equations (92), this rwdt
can be rewritten in the form

i4gain Eand q can be determined as functions of the quantities
II,,’, Du’, Dn’, and k deti.nedin equations (94). With some
additional transformations, equation (138) can then be puL
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into a form suitable for solving for the quantity ~ as a
function of k. Although the computations are somewhat
tedious, the soIutions obtained are completely independent
of the stress-strain law. These results are represented by
the solid lines of figure 9 sad are marked for various valum
of the side ratio R. The dashed curves, on the other hand,
represent the quantity Z as a function of h as derived from
equation (117). These curves have been computed for the
stress-strain law shown in figure 5 and the values of the
width-to-thickness ratio b/h as indicated in tho graph.
Given the two dimensionless quantities b/a and b/h, the
criticrd stress is then (lctermined by the corresponding
solid curve and dashed curve. This point gives the desired

vaIue of ~, from -whichthe buckling stressis found by solving
equation (117). The details of the procedure are found in
appendix C. It should also be pointed out that the solid
curves have been computed for the half-wavo number m= 1,
for it is shown in appendix C that the lowest value of E and
consequently the lowest critical stress, will be obtained for
this value of the wave number.
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Certain general conclusions concerning the bucding of such
a section can be reached without reference to the strcss-
strain law by means of the solid curves of figure 9. Thwa
curves show that, for a given side ratio R, ~ is a dccrmsing
function of X. This decrease is not the same for all values
of the side ratio, however. For small values of R (large
length-to-width ratios), ~ is almost constant. In fact, when
R ~ 0.10, ~ is practically constant and the criticaI stress is
the same as that found in the theory of elastic buckling of
plates, The plastic effects are very pronounced for larger
values of R and increase as R+l, that is, as the rcetimguhw
plate becomes more nearly square.

Finally, the intersections of tho solid and dushc(l curves of
figure.9 yield ~ as a function of the side ratio R; thww arc
replotted in figure 10. The top curve represents the elastic
case (X= 1) and is independent of b/h. TI.N other thrco
curves correspond to the cases b2/h2=300, 250, aml 200,

respectively. It should be noted that ~ for the clnstic case
is always greater than ~ for the plastic caso; this diflcrcnco
is more marked for shorter (larger l?) rind thicker (smaller
f3’/h’) plates.
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E!!EEGY METHOD

In the preceding section rigorous solutions were obt~ined
for several cases of plastic budding of simply compressed
plates. In cases for which the rigorous solution becomes too
unwieldly or is not known at al, the energy method provides
a convenient. means of finding approximate values of the
buckling 10MkL

As far as the elastic bucliling of plates is concerned, the
energy method is ~“eII-e&ablished. (See, for instance,
reference 1, pp. :325 ff.) At &at glance, it may appear
somewhat doubtful w-het.herthis method can be &xtended to
the plastic buckling of plates. That such an extension is
legitimate, however, foIlows from the fact that equation
(109) has the same form as the equation for the elastic
buckling of an orthotropic plate with fle.xuralrigidities &
and ll~sand torsional rigidity Z& Since the energy method
is valid for this problem of elastic buc~m and since the
plastic budding of a simply compressed plate is governed by
the same equation, the application of the energy method to
the plastic buckling of plates is legitimate.

tTnder sufficiently smaII edge thrusts the flat form of the
plate represents a stable equilibrium configuration. Wlwn
the edge thrusts reach the critical value, however, this
equilibrium becomes inclitlerentand the plate may assume a
bent form. This transition from the flat to the bent form,
that is, from one inclfierent equilibrium contigumtion t.
another one, doea not involve any energy input or output-.
Accor&ngly, the work done by the edge thrusts equaLsthe
fle.xuralenergy of the bent plate. The mathematical expres-
sion of this principle is the basic energy equation:

DJf{[l–ca(2–v)~]ti=.~+
~[y_@ -v) (2P—l)ll&& +

[1–ca(2v– 1)’]ti,;+2(l-r)ti=: ]dzdy=r&fJtb:&dy
(139)

where the range of integration is the area of the plate; that is,
OSx~a, O~gsb. As is easily seen from equations (46) rmd
(74), the left-hand side of equation (139) equals

–~J J (~iz~u –~lxu~,~+al$z)dzdy (140)

which represents twice the rate at.which work is done by the
bending and ttiting moments. In the elastic range, c= O,
this expre=ion can be written in the familiar form

DyJ[(ti?==+ti,,) ’-2(l-v) (ti=tir,-ti=:)]dxdy (141)

The right-hand side of equation (139) repr=ents twice the
rate at.which work is done by the edge thrusts and has the
same form m in the elastic case.

The following expression for the critical load of the plate is
obtained from equation (139):

.7~&=—
B (142)

where

~=D Ss{[1–ca(2–v)qti=2 +2[P–c6(2–v) (%-l) ]tiz.ti,”+

~1–c8(2~–l)]ti~,: +2(l-v)ti=:~cLrdy (143)

and

B= Ssw.=dzdy (144)

The right-hand side of equation (142) depends on the
function w, that.is, on the deflected shape of the plate. No-iv,
any restriction which is imposed on the deflection rate G, orer
and above the bounda~ conditions discussed in the third ..
section of the AllTA_Ll”SIS~amounts to an increase in the
sttinesa of the plate and must, therefore, leacl to an increase
in the critical load. The critical Ioad for a given plate is
accordingly found as the smallest value which the righkhand
side of equation (142) can assume for functions ti possessing
continuous partial derivatives of the second order and
satisfying the boundary conditions for the deflection of the
plate.

In the elastic case, c=O, the right-hand side of equation
(142) is independent of the buckling stress UO. Equation
(142) therefore furnishes the buckling stre= aOwhich cor-
responds to a given plate thickness h. In the plastic case,
however, the numerator ~ of the right-hand side of equation
(142) depends on the buckling stre= aOthrough the quantities
c and & Equation (142) should therefore be considered as
an equation which determines the criticaI thickness h
corresponding to a given buckling stress. If the expression
for ~, from equations (73), is substituted into equation (143)
and the resdingform of equation (142) solved with respect
to h, the following formula is obtained:

(145)

where B is given by equation (144) and A’ denotes the
integral on the right-hand side of equation (143).

The energy method will now be applied to the buckling of a
cruciform section previously considered. A suitable choice of
the approximate deflection rate w is

ti=q(&-2p+p) (146)

where ~=z/a and q=y/it. This function satisfies alI the
boundary conditions on the plate except at the free edge
y= b. Nevertheless, this expression proves to be a satis-
factory approximation as will be seen shortly. The necessary
integrations indicated in the definitions of ~~and 13 (equations
(143) and (144)) can be easily carried out in this case; for
example,
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H J“’(1 –12&’+8~+36~–48:5 +16~)d~u’cW2dxdy=--:R ~
. .

17
= 3~R

(148)

H U
w.2dxdy = R ~~ :1qz(l–12t2+8P+36&–4818+ 16$)d&iq

,.
17R.—
105 (149)

where R=b/a. Thus

B 17as.@ 17a2R2. _
Z’= 168Rz[l–c%(2–v)~ +102(l–v) ‘WIFl),,’+lo2(l-vj

(150)
and

#8R2~lI’+102(1-v)—
171r2 (151)

where ~ is defined in equation (117).
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Since II,,’ has been previously computed as a function of k
(see table I), ~ maybe readily evaluated from equation (151)
as a function of ~ for various values of the parameter R,
This has been done for the example v= 0.32 considered in rtn
e.dier section. The results are shown in figuro 11 in which
the solid lines represent the solution obtainwl by th energy
method and the.dashed lines are those found from tho exact
solution. A brief inspection will show that tho energy
method, as-applied here, gives a very good approxinmtion in
the technically interesting region of small vtiluesof R. The
error increasesas R becomes large and reaches o maximum of
about 8 percent. It should also be noted that for n given
value of R the error is an increasing function of A. The

energy method ac.tually yields better rcsults when the

complete. problem of determining the critical values -of ~

associated with a given stress-strain law is carried out.

These points are found from the intersections of t.hc curves of

figure 11 and the curves derived from the stress-strain Iaw

through equation (1.17) (@. 9). Since the curves of figure 9

are m&otonic, increasing functions of X with a slope angle of

less than 90°, the error will be smaller than the original
estimate. The results of applying this method k the cases

treated in the previous section on exact analysis arc shown in

figure ’12. The solid curves represent the solution by the
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energy method, -ivhereus the dashed curves are the exact

solution. It is seen thtit the maximum error is of the order of

~% percent of the value of ~. This appears to be well within

the order of accuracy of the theory itself. Finally, the
approximate value of ~ is always greater than the exact
salution as is usually found in the application of the energy
method.

Equation (151) ako affords an easy means of studying the
general character of the critical parameter~ as a function of h
for various values of R. It has already been pointed out that
17,,’ is a decreasing function of A starting at &’= 1 for
h= 1 and approaching ~11’=0.2413 for k+ ~. Thus for
small vrduENof R, the firstterm has little influence and ~ is
approximately a horizontal line defined by the equation

&lo2(l-Y)—
17$

(152)

The elastic solution based on the energy method with the
deflection given by equation (146) is

~= 168R2+ 102(1 –v)
17+

(153)

and equations (152) and (153) agree quite closely for small
values of R. LTnder these circumstances, then, the critical

stress determined from the plastic theory will be the same as
that obtained from the elastic formulas.

BROWN lJNIVERSITY

PROVIDENCE, R. I., MQrch 26,1947

APPENDIX A

DIFFICULTIESPRESENTED BY ILYIJSHiN’SSTRESS-
STRMN llEL~l!IONS

It has been pointed out in the first section of the ~X&

lWIS that certain objectionable discontinuity ies are present

at the neutral surface when the state of stress and strain in

a body is described by rel~tions of the type used by llyushin

(reference 6). More precisely, it has been shown that the

equations for loading rmd unloading do not give the same

increments in strain at. the neutral surface; this diflicuhy is

not present in the theory of plastic flow de-i-eloped in the

present report. Such problems always arise when an at tempt

is made to take unloadirg into account in a theory of plastic

deformation. (See reference 10, p. 400.)

The inconsistency is brought out more clearly if the whole

problem is considered in terms of the state of stress and

strain existing in the buckled plate. Let

(M)

Then Ilyushin’s stress-strainre~ationsfor loading in the case
under consideration (equations (30)) can be written in the
form.

2&== (1+0) (2U=—UJ

2E.e,=(l +Q) (–u=+2a,) 1 (iU)

G7.,=3 (1 +Q) 7., J

Differentiated with respect to time, these become equations

of the follovring type:

2EO;==(1+ n) (2;=— tir)+ h(2u.—ur) (A3)

In particular, for budding from a state of simple compression,

u== — ao and aY= r=,= O,

. dn.
‘=Gt ‘i

= —; w (2ti=—;,) (A4)

where fl~= dflfdui. Accordingly,

211&i==(1+Q+ u@’) (2U=—d,) (A5)

The boundary between the regions of loading aDd unloading
is a plane z= Constant. If the displacements me to be con-
tinuous across this plane, ~., & and ?,Y, too, must be centinu-
OUS. lloreover, according to Ilyushin’s theory the sign of
—uo~=serves as a criterion for loading and unload~. Site
<=is continuous, it must vanish at the bounda~ between the
regions of loading and unloading. Thus, 2;=— dr is mn-
tiuuous, too, and h=O on the boundary. Denoting the
values on the loading side of the boundary by the super-
stipt + and the vahes on the other side by the superscript —, -----
the strains at the neutral surface become

2ai== (1+Q) (2;=+—;,+)
= 2;=–— ;w–

=0

21Z&= (1+Q) (– u.++2ti,+)

=—$z--j-25”-

l%zr=3 (1-f-Q)+=,+

=3+.,-
Thus

ti=-=(l+$l) ~=+

6,-= (l+Q) ;,+

;=,-= (1+Q) +=,+1

(A6)

Siice (1+Cl}>l, the rates of stress on the mdoading side of
the boundary are of the same sign as those on the loading.
Furthermore, the absolute values of the rates of stress on ‘—’-
the unloading side are greater than those on the loading side.
While this prediction of Ilyushin’s stre=strain relations does
not violate the equations of equilibrium, it does seem quite
strange when compared with the usual notiona of loading
and unloading. The result is of a sufficiently startling
character to call for direct experimental vefication before
a theory of structural stability in the plastic range k based
on these stress-strainrelations.
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That the discontinuitiea implied in Ilyushin’s stress-strain
relations are a source of concern ta Russian scientistsworking
in this field is seen from tho following passage which is quoted
from W. W. Sokolovsky’s recent paper (reference 14) in
which the stability problem is specifically discussed:

“In solving these problems, the Mises-Hencky theory was
employed, under the assumption of the incompressibility of
the plaatic material. This assumption has a strong influence
upon the value of displacements and doee not permit sattkjy-
hg completelyth4 conditions oj th continuity qf all component8
of stress and dtiplacements on the boundaw? between the dast?k
and the pkwtti zones. An objective of recent work is to avoid
three defects of the theory.”

While the discontinuities appear to have been noticed, the
source has not bem traced correctly, for these discontinuities
subsist even if the c.ompressibiIityof the material is taken
inta account. They can be avoided onIy by replacing
Ilyushin’s theory of plastic deformation by a theory of
plastic flow of the type given in the present report.

APPENDIX B

DETAILSIN DEVELOPMENT OF FUNDAMENTAL PLATE
EQUATION

DETERMINATION OF NEUTRAL SURFACE

The neutral surface can be determined from the condition

that the additional stress resultants present in the buckled
state must be in equilibrium. Rather than compute the
rates of the stressresultants arising from UZand Urseparatdy,
it is much simpler to consider the combinations d:—vti~and
“ –v+,. (A similar device is employed in reference 6, p.
&1.) For unloading, equations (40) may be used to yield

(III)

On the other hand, equations (39) give for loading

Transposition in the first c~fequations (Bz) leads to

A– 1
uz—vk8=i=——* (2U=–Uv) 033)

which, according to equations (41), can be written as

IiZ—Vciv= i= — (5–4:!-;)–2P)’ ‘(2 —V)i=+ (2V—l){V] (B4)

With

—

c= (5–4PN(1 –-2V)’ (B5)

and K and % as defined in equations (49), equation (B4)

becomes

k=— v;” =4Z+2CK(Z— ZJ (B6)

Tlm quantity c depon(ls only on the properties of the material
through v and on the compressive strms through X. It is a
nondecrcnsing function of h, for

@=(5–4v)h–(1–2v)’– (5–4Y) (X-11 ~=
& [(5–4v)X–(1–2v)2]’

5—4V—1+4V—4V:
‘[(5–4v)A–(1–2v)~’

4~-v7
‘[(5–4v)A–(1–2v) ’]’

~o (B7)

since —1 ~vs 1/2. For h=l (the smallest value of h), c=O;
for X= w, c= l/(5 —4v). A similar exprwsion for tiP—vti=can
be found by the same technique; namely,

Uv—VU*=ip—CK(Z—20) (B8)

The rates of change of the stressrmdtants N, and ~P can
be computecI from equations (B1), (B6), and (B8). Two
cases arise depending on vrhethcr the region Z>ZOis a region
of loading or whether z<% is the region of Ioading; that is,
whether -O or whether ~<0.

Case (l), K> O.-Since K>O, the region 2>20 is Lho

region of loading and z<% that of unloading. Consequently,

equations (BI) are vrdid for z=% and equations (136) rmil

(B8) hol$ for z> ~. Now the rates of the stress rcsullank

~. and NV are defined as

(B9)

According to equations (B 1) and (B6) then

The strain rate ~.= i,– ZK from equations (45); noithor tho
function il nor ~ depends on z. Therefore

S:P’Z’2=S:.’Z’2
==ilh (B1l)

and

()

2
h7=– vNM=ilh+cK :–zO (B12)

In the same way, it cm be shown that

.-
=+; ()

2
CK ;—2% (B13)

From equations (B11] and (B13) it has been shown in fl~e
second section of the ANALYSIS that the position of tho
middle surface isgiven by that valuo of % which is the solution
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of equation (58). With f0=220/h, equation (5s) becomes
equation (60); and with equation (62) the solution can be
written as

&c2&@-1 (B14)

Since c is a nondecreasing function of h with vahs in thb
range Oscs 1)(5—4v), the quantity a will lie in the range

— m~a!~-1 (?315)

Consequently, only the positive root in equation (B14) can
be kept if the inequality ltol=12z0/h~s1 is to be preserved.
It will be convenient to denote this root by (0+; that is,

~~+=f~=a+ ~- (B16)

This is the formula for the neutral surface given in the second
section of the &.t\T&l”SIS.

Case (2), ~<0.—The same technique, as used for case
(1), with the exception of c~rtain changes-in sign can be
employed in the case when K<O. When K<O, the region

Z<ZO is the region of loading and z>~ that of unloading.

Consequently, equation @l) is nom did for Z= ?O vr~e

equations (B6) and (BS) hold for Z= ~. Thus i’V=—YATH

becomes

which can be evaluated, as in the previous case,

i+.–ni’r=i,h –Ck
(-w’

Similarly,

Again the rates of the reduced stress resultants

must vani&. This gives

h

(- )

2&h~+zo ‘=$=_=

Equations (49) can be used to show that

Z.0=(2-V) ;+(w) ~

= –* (5–4P)

and equations (B20) and (B21) yield

Equation (B22) is the m.dog of equation (5S)

in the form

(B18)

@19)

N= and i~r

(-B20)

@~l)

(B22)

which was
fo&d for the case ~>0. Ii can also be solved by intro-

ducing the noudimenaional quantity ~, defined as ~~=2~/h.
The quadratic equation far ~0is

@23)(l+ro)’–c(54:4,) =cl

and this can be transformed into

[

2
‘02+2 1—C(5—4P)1

+1=0 (B24)

The quantity appearing in the brackets was defined as a in
equations (64); thus the solution of equation (B24) is given by

~o=–a+}lcd-l @~5)

Again, the restriction that [fo[s 1 requires thab only one of

the signs in equation (B25) can be taken, namely, the minus
sign. Thus the solution is that given by equation (63);
namely,

r,= –a– ~m=~o- (B26)

where the symbol ~o- has been intreduced to distinguish this
case from the root fo+ previously found. Comparison of
equations (B16) and (B26) shows that

to-= –~o+ @~7)

ID addition, ~0~<0 for I&-O and tO->O for ~<0, as might
be expected from the geometry of the situation.

DETERMINATIONOF RATES OF CFIAXGE OF BE%~ISG LXD
TWISTING MOMKXTS

The moment rates can be. computed. now that ~ or j-Ois
known for each of the cases ~0 and K<O. Since th: rates

of charge of the reduced bending moments 3fz and Mr are

defines as in. equation (64), the device of computing ~~z–il~,

and M, — vMS may be used here.
.-

Case (1), ~>0.—~pplication of equations (B1) and (B6]
yields

The quantity 20 can be replaced by h~O+/2=z0 with the result

(B31)

the last equation becomes

Equation (BS)

k=— v+” only in

equation (B6].
seen that

for +n–~+. differs fr~m equation (B6) for

that —K replacw ~K and ~Y replaces := in

l’i5thout further computation, it can be
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Equations (B32) and (B33). can be solved for the reduced
bending moments with the result that

Al== – 1q(:: #) [~1+ ~K~—(2– ~@l @34)

~“=–lz(::fi [
Ukl+ka— (2P—l)CWZJ (B35)

The curvature X can be expressed in term of xl and RS ac-
cording to equations (49); cdneequently,

i’tZ==-12(1h:a {R1[l–C6(2–P)21 +Z[V–C3(2–V) (2P–1)])

@36)

ill,= – ~2(1h:n {Z@-ca(2-v) (2P–1)] +R2[I–C6(2V– l)q}

(B37)

These relations are the same aaequations (67) and (68) which
were given in the second section of the ~ALYSIS without
proof.

Case (2), i< O.—This ca& can be handled in exactly the
same.manner as the previous one provided the integrals are
split up as follows:

J J
h&Vi&= TD izz dz+ 2c~ ~~pz(z–zo)dz (B38)

=._ ‘ “-~ @ (B39)~+~~(~+%. 2 + 8 )

For ~<0, zo=hfO-/2 and

‘~-vti~=-%[k~-ck(’-~’’-a+~)l-)l ‘B40)

Now f’-”= – f’+; thus,

( )( )
1–; fo-s+; f~- = 1+; ro~–; f“+ =26 (B41)

In o~her words, Mz– v~, will be gi~en by the same formula
for K<O as for K.>0. Simiiarly hfr– vM. will be given by
the same expression in either case; and, consequently,
~z and ~v can be found from equ~tions (B36) and (B37)
independently of wldher K.<0 or K>O.

The rate of change of the reduced twisting moment M.v
is defined in equation (65). According to equations (4o)
and (45) equation (65) may be rewritten as

ill=,= –—2(F;.) J:: +’”’ “
@42)

1
–J

‘p (~–zk,z)z dz (E43)= ‘~j .~p

Integration of the last equation furnisl.wa

. ha (1-1)&
“’=12(1-F) 2 (B44)

This result, too, holds independently of whether &O or
K<o.

APPENDIX C

DETAILED COMPUTATIONS FOR SPECIFICEXAMPLES
BUCKLING OF A THIN STIUP

Accmhg to h definitions of ?’ and 8, equations (85), and

of p, equations (82),

(cl)

The terms of the second row of the determinant (equation
(90)) can therefore be written in the form

,

The determinanta.1equation, equation (90), is thus seen to ba
equivalent to

{ )
‘~< [D,,– (1–v)D] ‘ tan $’+8 D&--

r {Dtiz+m$ [D12–(1–v)D]}’ tanh $=0 (C3)

With the definitions of equations (92), equation (C3) can
be rewritten in the form of equrztion (91). The evaluation
of the roots of the transcendental equation (91) can be simpli-
fied further by introducing equations (94). A simple compu-
tation will show that

kDu’

(J~’=m~ T–AD”’’+D’” )

}

(C4)
kD,j’

(J~’=m%p 7–AD”’2–DI° )

If, for a fiiecl wdue of the span a., the width 6 of the plato
approaches zero, R and hence ~ nnd ? txnd toward zero too.
Accordingly, the.functions f tanh (~/2) and T tan (q/2) aP-
pearin~in equations (CA)maybe replaced by P/2 and f/2,
respectively. For m=l, in particular, equation (91) can
then be written as follows:

C4kDzz’ –ADm’2+DIz’-@zz’) 2(>lkDzz’-AD2’Dlil)’) +

(~kDsi –A&’$-D,*”+’ @Dzs’)2(JkDw,’–AD22’r+D12’) =0

(C5)
or in the form of equation (93) as

kDa’–ADzz’’-D2+’2+ @D22’a= O

Equation (99) for the buckling load when v= 1/2 can be
developed from the following considerations. According b
equations (73) and (94),

D,,’= 1–:cfi

D,z’ =Dzz’ = 1)

(C6)
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for r= 1/2. From these resuIts and equations (92), it is
easily seen that (/= V;consequently,

k=: (1 –3c8) (C7)

when Y= 1/2. For this value of
forward computation will yield

Poisson’s ratio, a straight-

&_&!
Ji+ 1

Therefore.

and

k=; (l–3c8)=
(l+31q’

On the other hand, according to equations

where u,, is the criticaI compressive stress.

~cr T=E&’ 1
‘T (l+lqy

(c8)

(C9)

(Clo)

(94),

(Cll)

consequently,

(CM)

and the critical buckl~~ load P is given by

.... .-

from equation (99). This is the desired result from which
Von K6rmtin’s equation follows.

It has been pointed out in the third section of the AFIAL~-
S1S that the neutral line of the beam and the neutral surface
of the plate will coincide if and only if v= 1/2. This can be
seen quite simply from the following discussion. If v= 1/2,
then 20=~,/~ ac.oording to equations (49). It follows from
equations (CS) that

(C13]

The distance of the neutral surface from the lower surface is
given by

(C14)

This is the same result.as that obtained in the direct analysis
of the buckling of a beam. Gee reference 1, p. 158.)

.-

Con~ersely, assume that the two positions of the neutral
line agree; that is,

,o+=-- (C15)

where ~0+is computed from equation (B16). Since equation
(C15) must be an identity in ~, it must be valid for” any
particular value of k For computational convenience,
consider the case when x=4. Then

J-1 1——_
JTF—5

1

u
a=3 (5–4P) J

where u=8F+ 12Y–23. Consequently,

1=——
3

and subsequent simp~cation leads to

(C16)

(C17)

I U= —5(5—4V) (C18)

Evacuation of u in terms of Yyields

(22/-1)’=0 (C19)
or

1~=–
2 (C20)

Therefore the two methods of determining the neutral line
w5Magree if and only if V= 1/2,and the transition from plate

to beam VW be valid only under this condition.

BUCELXNG OF A CRUCTFORM SECTIO?J

Transcendental equation (138) must be solved to determine
the critical stress. A straightforward computation vrill
show that

t’=”%?(/-X+D.’)

}+%’(J%==-’) “21
Since

~,=v’+w;y” (C22)
92477%51—33
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equation (138) can be written entirely in terms of ~ and the
parameters R, Q, Dlz’, and I&’. For given values of m ~d
R, the remaining parameter in the transcendental equation
are functions of X alone. .Thus ~ can be determined ae a
function of h by solving this equation by the usuaIiterative
procedures. The quantity k can then be found as a function
of A by solv~~ the second of .fiquations (C21). These results
me independent of the stress-strainlaw of the plate material.
On the other hand.,

~_12cOa2
–T-- (1–IF) ((223)

that is, for a given material k can be written as a function
of k once U.is Imown as a function of k.

It is a Iittle rn_ore.convenient to write the solution in terms
of the quantity k rather than k._ This parameter was dfined

in equation (117). Curves for k as a function of A for given
vabs of m and R can be obta~medin the following way.
The quantity k can be computed, as ~reviously deemibed,
by solving equations (138) and (C21); k can then be found
from equation (117). These. resultsare independent of the
strws-strain law and consequ~tly hold for any rectangular
plate. On the other hand, k can also be camputed as a

function of k for a given=tress-strain law according to

equation (117). The resulting function will depend on the

parameter b2/lL2. Once the side ratio R, ‘the width-to-
thicknew ratio b/h, and the wave form m have been selected,
the value of ~ corresponding to the buckling stress can be
obtaked IYyfinding the intersection of the two corresponding
curves of k against A computed as just outlined.

It has been point.crdout in the third section of the A17ALY-
S1S that the lowest value Ofi-, and hence the lowwt critical
stress, wiIl be attained for m= 1. This can be seen easily
from the following considerations. Figure 9 showed that
for m= 1 and a fixed value of h, ~ increases for increasing R.
With a simple change of variables, the solution for any value
of m can be obtained from the solutions for m= 1. Let

k’ =$

R’=mR

p=;,
1

(C24)

Then equ8tions (138) and (C21), written in terms of k’ and
R’, will be precisely the same as those for k and R when

m=l. Thus the curves of @ure 9 can be used for any m
provided R is replaced by R’ and ~ by ~. For m>l then,
~>~’ and R<R’. In other words when m# 1, the value of
~ for a.given value of R and k will be larger than the cor-
responding value of ~ for m= 1. Sinco the dashed curves
are mc.notonic, increasing functions of A, this implies that
the critical value of ~ will be lowest form= 1.
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